LDR-Brachytherapy of Prostate Cancer: Impact of Post-Implant Dosimetry on the Intraoperative Procedure

Dr. med. Armin Thöni Dr. phil. nat. Hans Neuenschwander PD Dr. med. Jörn Wulf

Radio-Onkologie, Lindenhofspital

Permanent Prostate Brachytherapy (PPB) -Principle

LDR Brachytherapy – permanent implantation of I-125 Seeds

Single seeds (0.8 x 4.5 mm)

Iodine-125

- Low activity: 0.5 mCi (20 MBq)
- Low energy: 27-35 keV
- Half-life 60 days

Several different implantation techniques in PPB

- Preplanning with CT and implantation with TRUS-guidance
- Preplanning on ultrasound
- Intra-operative (real-time) planning and implantation on US
- Interactive, dynamic, intra-operative planning and implantation with TRUS

Peripheral loading vs homogenous loading

The last needle of the outer ring

Seeds on the fluoroscopy screen

Post-planning

Goals:

- Evaluation of the quality of the implant
- Detection of unfavourable dose distribution due to edema, seed loss or seed dislocation

6 weeks after implantation:

- Fluoroscopy: Seed-count
- CT: Identification of the seeds
- MR: Identification of prostate and rectum

Postplanning: dose distribution on MR

Post-planning:

3Dreconstruction

Post-planning:

3Dreconstruction

The role of the radio-oncology core team in PPB in our setting

Pre-evaluation of the patient	Referring urologist	
Information of the patient	Urologist and Radiooncologist	
TRUS for planimetric volumetry	Radiooncologist	
Filling out the evaluation forms	Radiooncologist and Physicist	
Decision on indication	Radiooncologist	
Scheduling, seed-ordering	Radiooncologist and Physicist	
During intervention:		
Positioning of the US-Probe	Radiooncologist	
Outlining of organs	Radiooncologist	
Plan-calculation, supervision	Physicist	
Placing of needles	Urologist	
Seed-implantation	Urologist or Radiooncologist	
Postplanning	Radiooncologist and Physicist	
Measurements of seed-activity	Physicist	
Seed accounting/database	Physicist	

Patients

- 127 pts. treated in 2005 2007
- 2004 (since 4.6.): 10 Pts
 2005: 18 Pts
 2006: 36 Pts
- 2007: 73 Pts

115 low risk, 12 intermediate risk

- all treated with single seeds I-125 in one single session
- Prescription dose <u>145 Gy</u>
- no combinations with EBRT
- only occasional antiandrogens (n = 7)

Post-planning-results (general)

- Seed loss / seed migration 0.6% (30/127 pts, mostly SV): no appreciable consequence on dosimetry
- no significant difference in prostate volume (based on MRI) compared to the volume at implant time V(post) / V(intra)=1.01 ± 0.1

Dosimetric goals for CTV

- D90 > 145 Gy (Dose covering 90% of CTV)
- V100 > 95%
 (% of CTV receiving prescription dose)
- V150 < 65%

(% of CTV receiving 150% of prescription dose)

Post-planning-results (CTV)

- D90 > 145 Gy (Dose covering 90% of CTV)
- V100 > 95% (% of CTV receiving prescription dose)
- V150 < 65% (% of CTV receiving 150% of prescription dose)

	mean	range
D90	163.9 Gy	131.8 - 202.9 Gy
V100	94.7 %	75.6 - 99.4 %
V150	62.3 %	34.6 - 83.7 %

- Problems in partially "cool" implants: ventrally at base of prostate: normally not site of a tumour;
- no salvation procedures deemed necessary.

Post-Planning-Results (dosimetry)

- Relationship D₉₀ (post) / D₉₀ (intra)
 - quality marker for the <u>precision</u> of the implant:Goal as close as possible to 1
 - 2005 & 2006:
 0.86 ± 0.08
 - 2007: 0.91 ± 0.07

 \succ this difference is significant (p=0.0003)

 that allowed us to gradually decrease D₉₀ (intra) at implant time without compromising the quality of the implants

Other results

- Rectal dose: Goal V100 < 1.3 cc: not fulfilled in 15 / 127 pts (But: only 1 pt with rectal bleeding)
- Urethral dose: not evaluated in post-planning (3/127 pts with temporary suprapubic catheter)
- No obvious correlation between D90 (or other parameters) and postoperative urinary symptoms
- until now no biochemical failure

But still too early to presents results on outcome (recurrence, toxicity)

Conclusions

- The quality of the PPB procedure and the resulting implants have been <u>improved over time</u>
- Post-implant dosimetry:
 - indispensable for the proper <u>evaluation</u> of an implant
 - <u>feedback</u> on the quality of the intra-operative procedure
 - hints on adjustments for future implants

Conclusions

 Our local organizational procedure (radio-oncological core-team, multiple urologists) seems to be effective and could be recommended also for other centers

 There is no difference in implant quality between a trained and an untrained urologist if guided by an experienced core team (physicist and radio-oncologist)

Outlook

- To overcome the problem of seed moving a few mm backwards during implantation:
 - Bard SourceLink[®] connector system
 - offers various selectable distances between sources

